Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 196: 106427, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479295

RESUMEN

The Western Indian Continental Shelf (WICS) experiences upwelling during the Southwest Monsoon (SWM), leading to deoxygenation and acidification of subsurface waters. The region has patchy growth of corals, e.g. in the Grande Island and Angria Bank. Measurements made during the late SWM of 2022 reveal that the shelf waters around the Grande Island were subject to varying environmental conditions, viz. lower temperature (21.3-26.1°C), oxygen (0-4.9 mL L-1) and pHT (7.506-7.927). Complete anoxia was associated with sulphide build-up to a maximum of 5.9 µmol L-1 at 17 m depth. An additional episodic condition (high temperature, low oxygen and pH) also occurred associated presumably with a plankton bloom in April 2017. Hence, unlike the offshore coral site Angria Bank, waters around the Grande Island experiences extreme changes in physico-chemical conditions (e.g. Ωarg ∼1.2-1.8 during October 2022) seasonally as reported here. The biogeochemical conditions are however not as intense (Ωarg = 0.6) as observed along the eastern boundary upwelling system of the Pacific Ocean.


Asunto(s)
Antozoos , Animales , Ecosistema , Océano Pacífico , India , Oxígeno , Arrecifes de Coral
2.
Environ Sci Pollut Res Int ; 31(10): 15271-15288, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38289549

RESUMEN

Continuous understanding of the ongoing ocean acidification (OA) is essential for predicting the future impact of OA on marine ecosystems. Here we report the results of open ocean time-series measurements (19 cruises) of seawater pH in total hydrogen ion scale (pHT) and associated parameters in the Arabian Sea (AS) and the Bay of Bengal (BoB). During southwest monsoon (SWM), the pHT within the 30 to 100 m water column shows the maximum difference between the two basins with BoB pHT being lower (up to ~0.39 units) than AS which could be due to freshwater influx from rivers, mixed layer dynamics, and cold-core eddies. However, during Spring inter-monsoon (SIM), the pHT of BoB follows the trend of AS. A contrasting finding is that the lowest pHT occurs at 350 to 500 m in the BoB while it is ~1000 m in the AS. The pHT within the 150 to 1500 m layer of these two basins shows lower values by 0.03 (±0.02) in the BoB as compared to the AS. The possible reasons for the low pHT within the BoB oxygen minimum zone (OMZ) could be due to intrusion of western Pacific water in the BoB, freshwater influx from rivers, variations in OMZ of the two basins, higher temperature (~2°C) within the OMZ of the AS, and denitrification in the AS. The pHT in both the basins (500 to 1000 m) is lower than in the North Atlantic and higher than in the North Pacific waters; however, the pHT in the 200 to 500 m is lower in the BoB than in all these basins. This study highlights the under-saturation of calcium carbonate at very shallow depths (~ 100 m) in the BoB, indicating that the plankton in the BoB are facing a major risk from OA compared to the AS and need further investigation.


Asunto(s)
Ecosistema , Agua de Mar , Bahías , Concentración de Iones de Hidrógeno , Agua , Oxígeno
3.
Environ Monit Assess ; 195(6): 635, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37133635

RESUMEN

Gonyaulax polygramma, a bloom-forming dinoflagellate, has been repeatedly observed along the southeastern Arabian Sea in recent years. During our study in October 2021, a patch of reddish-brown water was observed in the nearshore waters off Kannur (southwest coast of India) and later identified as Gonyaulax polygramma using scanning electron microscopy (SEM) and HPLC-based phytoplankton marker pigments. Gonyaulax polygramma accounted for 99.4% of the phytoplankton abundance at the bloom location, with high concentrations of peridinin and chlorophyll-a at the study site. High concentration of SiO42- was observed at the bloom site, while other nutrients were lower than the previously reported values. The bloom of Gonyaulax polygramma also resulted in high concentrations of dimethylsulfide, an anti-greenhouse gas, at the bloom site. In addition to onsite observation, Sentinel-3 satellite data was also used in the detection and validation of the observed bloom using the NDCI index. From the satellite image, it was evident that the bloom persisted at the mouth of the rivers during the study period. Since the red tide of Gonyaulax polygramma has been observed recurrently in the southeastern Arabian Sea, it is proposed to use satellites to detect and monitor the bloom on a routine basis.


Asunto(s)
Dinoflagelados , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Fitoplancton , Floraciones de Algas Nocivas , Clorofila A
4.
Sci Total Environ ; 879: 162941, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-36934917

RESUMEN

Global oceans are witnessing changes in the phytoplankton community composition due to various environmental stressors such as rising temperature, stratification, nutrient limitation, and ocean acidification. The Arabian Sea is undergoing changes in its phytoplankton community composition, especially during winter, with the diatoms being replaced by harmful algal blooms (HABs) of dinoflagellates. Recent studies have already highlighted dissolved silicate (DSi) limitation and change in Silicon (Si)/Nitrogen (N) ratios as the factors responsible for the observed changes in the phytoplankton community in the Arabian Sea. Our investigation also revealed Si/N < 1 in the northern Arabian Sea, indicating DSi limitation, especially during winter. Here, we demonstrate that rice husk with its phytoliths is an important source of bioavailable DSi for oceanic phytoplankton. Our experiment showed that a rice husk can release ∼12 µM of DSi in 15 days and can release DSi for ∼20 days. The DSi availability increased diatom abundance up to ∼9 times. The major benefitted diatom species from DSi enrichment were Nitzshia spp., Striatella spp., Navicula spp., Dactiliosolen spp., and Leptocylindrus spp. The increase in diatom abundance was accompanied by an increase in fucoxanthin and dimethyl sulphide (DMS), an anti-greenhouse gas. Thus, the rice husk with its buoyancy and slow DSi release has the potential to reduce HABs, and increase diatoms and fishery resources in addition to carbon dioxide (CO2) sequestration in DSi-limited oceanic regions such as the Arabian Sea. Rice husk if released at the formation site of the Subantarctic mode water in the Southern Ocean could supply DSi to the thermocline in the global oceans thereby increasing diatom blooms and consequently the biotic carbon sequestration potential of the entire ocean.


Asunto(s)
Diatomeas , Oryza , Fitoplancton , Concentración de Iones de Hidrógeno , Agua de Mar , Océanos y Mares , Silicatos , Silicio
5.
Environ Sci Pollut Res Int ; 30(14): 42351-42366, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36648723

RESUMEN

Oceanic calcifying plankton such as coccolithophores is expected to exhibit sensitivity to climate change stressors such as warming and acidification. Observational studies on coccolithophore communities along with carbonate chemistry provide important perceptions of possible adaptations of these organisms to ocean acidification. However, this phytoplankton group remains one of the least studied in the northern Indian Ocean. In 2017, the biogeochemistry group at the Council for Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO) initiated a coccolithophore monitoring study in the eastern Arabian Sea (EAS). Here, we document for the first time a detailed spatial and seasonal distribution of coccolithophores and their controlling factors from the EAS, which is a well-known source of CO2 to the atmosphere. To infer the seasonality, data collected at three transects (Goa, Mangalore, and Kochi) during the Southwest Monsoon (SWM) of 2018 was compared with that of the late SWM of 2017. Apart from this, the abundance of coccolithophores was studied at the Candolim Time Series (CaTS) transect, off Goa during the Northeast Monsoon (NEM). The most abundant coccolithophore species found in the study region was Gephyrocapsa oceanica. A high abundance of G. oceanica (1800 × 103cells L-1) was observed at the Mangalore transect during the late SWM despite experiencing low pH and can be linked to nitrogen availability. The high abundance of G. oceanica at Mangalore was associated with high dimethylsulphide (DMS). Particulate inorganic carbon (PIC) and scattering coefficient retrieved from satellites also indicated a high abundance of coccolithophores off Mangalore during the late SWM of 2017. Interestingly, G. oceanica showed malformation during the late SWM in low pH waters. Malformation in coccolithophores could have a far-reaching impact on the settling fluxes of organic matter and also on the emissions of climatically important gases such as DMS and CO2, thus influencing atmospheric chemistry. The satellite data for PIC in the EAS indicates a high abundance of coccolithophore in recent years, especially during the warm El Nino years (2015 and 2018). This warrants the need for a better assessment of the fate of coccolithophores in high-CO2 and warmer oceans.


Asunto(s)
Haptophyta , Agua de Mar , Carbono , Dióxido de Carbono/química , Concentración de Iones de Hidrógeno , Océano Índico , Océanos y Mares , Fitoplancton/química , Agua de Mar/química
6.
Environ Monit Assess ; 193(1): 27, 2021 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-33389180

RESUMEN

Anthropogenic activities release effluents containing nutrients and pathogenic bacteria that change the characteristics of coastal ecosystems. An important type of marine pollution which has occurred in 3 different states in India during 2019 is sea foam. Sea foam was found on Hole beach, Goa (Lat: 15.404° N, Long: 73.787° E), where nutrients (NO3- = 137 µM and organic nitrogen = 121 µM) from a garbage dumpyard are released directly via streams/gutters to coastal waters. This resulted in a bloom of the diatom Thalassiosira pseudonana, associated with high concentration of total organic carbon and fucoxanthin. Decay of this bloom along with strong agitation due to rocks and wave action resulted in sea foam. We isolated foam-associated bacteria and identified pathogenic bacteria including Enterobacter cancerogenus through 16S rRNA gene sequencing. Such foam-associated pathogenic bacteria, could be antibiotic resistant, and may have adverse effects on human health. This can also hamper the tourism industry of a small state like Goa that relies heavily on tourism.


Asunto(s)
Ecosistema , Monitoreo del Ambiente , Enterobacter , Humanos , India , ARN Ribosómico 16S/genética
7.
Nat Commun ; 9(1): 1265, 2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29593290

RESUMEN

The fate of the enormous amount of reactive nitrogen released to the environment by human activities in India is unknown. Here we show occurrence of seasonal stratification and generally low concentrations of dissolved inorganic combined nitrogen, and high molecular nitrogen (N2) to argon ratio, thus suggesting seasonal loss to N2 in anoxic hypolimnia of several dam-reservoirs. However, 15N-experiments yielded low rates of denitrification, anaerobic ammonium oxidation and dissimilatory nitrate reduction to ammonium-except in the presence of methane (CH4) that caused ~12-fold increase in denitrification. While nitrite-dependent anaerobic methanotrophs belonging to the NC10 phylum were present, previously considered aerobic methanotrophs were far more abundant (up to 13.9%) in anoxic hypolimnion. Methane accumulation in anoxic freshwater systems seems to facilitate rapid loss of reactive nitrogen, with generally low production of nitrous oxide (N2O), through widespread coupling between methanotrophy and denitrification, potentially mitigating eutrophication and emissions of CH4 and N2O to the atmosphere.

8.
Zool Stud ; 54: e3, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-31966090

RESUMEN

BACKGROUND: A swarm of pelagic tunicate (Pyrosoma spinosum) was found in the surface open waters of the Arabian Sea during late southwest monsoon (September 2007). The swarm site was characterized by moderate southwesterly wind (approximately 7 m s-1), relatively low sea-surface temperature (approximately 26°C), shallow mixed layer (approximately 50 m), and substantial macro-nutrient concentrations (surface values: 2.5 µM nitrate, 0.3 µM phosphate, 0.9 µM silicate, and 5.0 µM ammonium). Despite adequate macronutrient availability, the swarm site was characterized by low diversity of phytoplankton (>5 µm) and mesozooplankton in the upper 200 m. Low chlorophyll a concentration (27.3 mg/m2 in the upper 120 m) at the swarm site was dominated (90% to 95% in the upper 40 m) by the Synechococcus (20 × 106 /ml). RESULTS: Silicate deficiency in surface waters upwelled or entrained from the thermocline may be a key factor for the dominance of smaller autotrophs (flagellates and cyanobacteria) that seems to offer favorable conditions for episodic occurrence of swarms of these filter feeders. Low carbon content (37% of total dry weight) and the lower molar(carbon-to-nitrogen) ratio (5) in P.spinosum suggestgrowth of these organisms is carbon-limited. CONCLUSIONS: Wedescribe various physicochemical and biological conditions at the P.spinosum swarmlocation and at two other nearby sites not affected by it. The biological factors predominantly high densities of Synechococcus and flagellates were best suited conditions for the proliferation of pyrosome biomass in the central Arabian Sea.

9.
Nature ; 461(7260): 78-81, 2009 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-19727197

RESUMEN

Primary production in over half of the world's oceans is limited by fixed nitrogen availability. The main loss term from the fixed nitrogen inventory is the production of dinitrogen gas (N(2)) by heterotrophic denitrification or the more recently discovered autotrophic process, anaerobic ammonia oxidation (anammox). Oceanic oxygen minimum zones (OMZ) are responsible for about 35% of oceanic N(2) production and up to half of that occurs in the Arabian Sea. Although denitrification was long thought to be the only loss term, it has recently been argued that anammox alone is responsible for fixed nitrogen loss in the OMZs. Here we measure denitrification and anammox rates and quantify the abundance of denitrifying and anammox bacteria in the OMZ regions of the Eastern Tropical South Pacific and the Arabian Sea. We find that denitrification rather than anammox dominates the N(2) loss term in the Arabian Sea, the largest and most intense OMZ in the world ocean. In seven of eight experiments in the Arabian Sea denitrification is responsible for 87-99% of the total N(2) production. The dominance of denitrification is reproducible using two independent isotope incubation methods. In contrast, anammox is dominant in the Eastern Tropical South Pacific OMZ, as detected using one of the isotope incubation methods, as previously reported. The abundance of denitrifying bacteria always exceeded that of anammox bacteria by up to 7- and 19-fold in the Eastern Tropical South Pacific and Arabian Sea, respectively. Geographic and temporal variability in carbon supply may be responsible for the different contributions of denitrification and anammox in these two OMZs. The large contribution of denitrification to N(2) loss in the Arabian Sea indicates the global significance of denitrification to the oceanic nitrogen budget.


Asunto(s)
Fijación del Nitrógeno , Nitrógeno/metabolismo , Agua de Mar/química , Anaerobiosis , Arabia , Bacterias/genética , Bacterias/metabolismo , Carbono/metabolismo , Gases/metabolismo , Nitritos/metabolismo , Océanos y Mares , Oxidación-Reducción , Oxígeno/metabolismo , Océano Pacífico , Compuestos de Amonio Cuaternario/metabolismo , ARN Ribosómico 16S/genética , Agua de Mar/microbiología
10.
Mar Environ Res ; 65(5): 445-55, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18358526

RESUMEN

Studies on the Arabian Sea coastal anoxia have been of immense interest, but despite its ecological significance there is sparse understanding of the microbes involved. Hence, observations were carried out off Goa (15 degrees 30'N, 72 degrees 40'E to 15 degrees 30'N, 72 degrees 59'E) to understand the processes that mediate the changes in various inorganic nitrogen species in the water column during anoxia. Water column chemistry showed a clear distinct oxic environment in the month of April and anoxic condition in October. Our study based on microbial signatures indicated that oxygen deficit appeared as a well-defined nucleus almost 40 km away from the coast during the oxic period (April) and spreads there after to the entire water column synchronizing with the water chemistry. Striking results of net changes in inorganic nitrogen species in nitrification blocked and unblocked experimental systems show that denitrification is the predominant process in the water column consuming available nitrate ( approximately 0.5 microM) to near zero levels within approximately 72 h of incubation. These observations have been supported by concomitant increase in nitrite concentration ( approximately 4 microM). Similar studies on denitrification-blocked incubations, demonstrate the potential of nitrification to feed denitrification. Nitrification could contribute almost 4.5 microM to the total nitrate pool. It was found that the relation between ammonium and total dissolved inorganic nitrogen (DIN) pool (r=0.98, p<0.001, n=122) was significant compared to the latter with nitrite and nitrate. The occurrence of high ammonium under low phosphate conditions corroborates our observations that ammonium does not appear to be locked under low oxygen regimes. It is suggested that ammonium actively produced by detrital breakdown (ammonification) is efficiently consumed through nitrification process. The three processes in concert viz. ammonification, nitrification and denitrification appear to operate in more temporal and spatial proximity than hitherto appreciated in these systems and this gives additional cues on the absence of measurable nitrate at surface waters, which was earlier attributed only to efficient algal uptake. Hence we hypothesize that the alarming nitrous oxide input into the atmosphere could be due to high productivity driven tighter nitrification-denitrification coupling, rather than denitrification driven by extraneous nitrate.


Asunto(s)
Bacterias/metabolismo , Nitrógeno/metabolismo , Oxígeno/análisis , Agua de Mar/química , Microbiología del Agua , Bacterias/clasificación , India , Nitratos/metabolismo , Nitritos/metabolismo , Fosfatos/análisis , Densidad de Población , Compuestos de Amonio Cuaternario/análisis , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...